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LETTER TO THE EDITOR 

A non-local Hartree-Fock approach to embedding 

A N Andriotis 
Foundation for Research and Technology, Institute of Electronic Structure and Laser, 
PO Box 1527,711 10 Heraklion, Crete, Greece 

Received 16 October 1989 

Abstract. A new non-local Hartree-Fock approach to the embedding of a single impurity 
(atom, ion or molecule) into a solid is proposed. The method, which is based on both a 
coupled Hartree-Fock calculational scheme and the Green function embedding method of 
Inglesfield, aims at calculating lifetimes of the electronic states of the embedded impurity, 
either in its ground or an excited state. As an example, we present an application of this 
method to the embedding of a Li and a H e  atom into a metallic jellium. 

Recently, Andriotis and Nicolaides have developed [ 11 a non-local Hartree-Fock (HF) 
theory in order to describe the interaction of an atom (or ion) with a metal surface. The 
method is based on the coupled Hartree-Fock (CHF) calculational scheme [2] and its 
application is based on the assumptions that (i) the adatom/adion exhibits atomic-like 
behaviour, and (ii) the disturbance that the adatom introduces into the substrate can be 
described by an orthogonalisafion process by which the single-electron states, Y k ( r ) ,  of 
the metal substrate become orthogonal to the orbital states, Ya(r), of the adatom. 

These assumptions are fulfilled in the case of embedding atoms/ions with closed 
electronic shells into a metal. Of particular interest is the application of the CHF approach 
to the interaction of noble-gas atoms with metal surfaces [l, 31. On the other hand, 
atoms with open outer electronic shells, when embedded in metals, may have their outer 
electrons (mainly) strongly mixed with the metallic electron orbitals [4,5]. As a result, 
the energy levels of the embedded atom/ion (to be called the impurity) evolve into 
resonances exhibiting a broadening that is associated with a measurable line-width. The 
development of such resonances is similar to the autoionisation process and results from 
the ‘configuration interaction’ which mixes states of the same energy but of different 
configurations [4]. One way to obtain the energies ( E )  and the widths (r) of resonance 
states is dictated by the so-called ‘complex coordinate method’ (CCM) [6]. 

According to the CCM, the time-independent single-electron Hamiltonian is ana- 
lytically continued in the complex energy plane and its complex eigenvalues, e, are 
found. The energy position of the resonance is associated with the real part of e while 
the line-width is associated with the imaginary part, (e = E - ir /2).  In an analogous 
way to the CCM, in the present work we claim that the mixing of the continuum metal 
states with the discrete impurity states is associated with a complex crystal potential 
which is appropriately calculated. Consequently, the position and the width of the 
impurity resonances may be found from the eigenvalues of the Hamiltonian of the system 
which is analytically continued in the complex energy plane. 
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The idea for such an approach originated following the embedding approach of 
Inglesfield [7] who introduced a complex embedding potential using the Green function 
of the impurity-free substrate. According to Inglesfield's embedding technique, a limited 
region of space, to be called the 'impurity region', is considered within the substrate 
containing the impurity and separated by a surface Y from the rest of the substrate. In 
the impurity region the wavefunctions satisfy the Schrodinger equation 

-dV2Ya + (V(r) + Vext(&in, E ;  r))Y, EYa (1) 

where V(r) is the single-electron potential in the impurity region and Vext(ein, E ;  r )  is 
defined on the surface Y in terms of the embedding potential GO' (r,, r: ; .qn) at input 
energy by the equation [7] 

Vext(qn, E ;  r)Ya(r) = 6(n - n,) 4- + drd GO1(r,, rl ; [ ::: i, 

where r, is a point on Y and n (n,) the component of r (r,) perpendicular to Y. 
The introduction of the potential Vex, into (1) is necessary in order to have YU, ( r )  

correctly matched on Ywith the wavefunctions outside the impurity region. As is evident 
from (2), Vex, is energy dependent. The appropriate input energy [7] is the one for 
which = E. 

The CCM ensures that we can solve (1) by expanding Ya(r) in square integrable 
functions. As such we use the Gaussian-type orbitals (GTOS) and we solve (1) as we did 
in the case of a real Vext potential using the CHF calculational scheme [l]. The major 
differences between the present case and the CHF case is the energy dependence of Vex, 
and the fact that the one- and two-electron integrals are evaluated over the impurity 
region [7]. On the other hand, the functional dependence of Vext on the energy will 
dictate the numerical approach one can follow to obtain the eigenvalues of (1). For the 
general purposes of the present work, we have developed a computer code that is based 
on the algorithm of the analytic HF method [8], appropriately modified for the case of 
complex functions. 

As a first application of the present method, we have chosen the problem of 
embedding a He or a Li atom into a metallic jellium. The physical picture of our problem 
is depicted in figure 1. In the spherical impurity region defined by the radius r,, the 
potential is taken to be the (non-local) HF potential of the impurity atom. Outside the 
impurity region the potential is that of a metallic jellium and is specified by the value of 
the bottom of its conduction band, Vbottom. For this model, the embedding potential is 
taken, according to Inglesfield [ 7 ] ,  from the s-component of the free-electron Green 
function, i.e. 

where the energy ein is measured with respect to the empty space (vacuum). 

scheme (as dictated by our CHF approach [l]), we consider (2) and (3) for 
In order to incorporate Inglesfield's approach into our non-local HF calculational 

= E.  In the 
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Figure 1. Schematic representation of the single- 
electron potential for an impurity embedded in a 
metallic jellium. 

case of s-type impurities, like the present one, after expanding Yu,(r )  in GTOS, the 
combination of (1)-(3) leads to the following matrix problem: 

( k 2 S  + d/Zkr,R(O) + H)y = 0 

k2  = vbottom - E 

(4) 

( 5 )  
where S is the overlap matrix and the matrix elements of R(O) and H are given by the 
expressions 

(6) 

(7) 

(8) 

( 0 )  
= + R r ]  - VbottomSi] 

R ,  = (rs - 2/3,ra)Ry’ 

R(O) [I = (25/2/n’/2) (/31/3,)3/4 exp[ - ( P I  + /3,)r:]. 
In the above expressions are the exponents of the GTOS and H f )  is the HF 

Hamiltonian of the free impurity. Equation (4) can be solved, in general, by diagonalising 
the quadratic (in k )  matrix [9]. However, in the present case initial attempts indicated 
that a diagonalisation process cannot be applied for the solution of (4) because matrix 
R(O) has very few non-zero elements. For this reason we solved (4) iteratively starting 
with the zeroth-order equation 

( k 2 S  + H)y = 0 (9) 
which can be solved by ordinary diagonalisation. The whole iterative procedure used 
for solving (4) is repeated until (4) attains a self-consistent solution with respect to the 
mean value of the Hamiltonian given by (6) according to the algorithm of the analytic 
HF method [ 8 ] .  

In tables 1 and 2 we present results obtained according to the present method for the 
total HF energies and orbital energies for a He  and a Li atom, respectively, embedded 
in jellium of given parameters r, and V,,,,,,. The total HF energies refer to the average 
value of H given by (6). This is a good approximation as long as R(O) has elements whose 
absolute values are much smaller than unity. In the case of very strong impurity-metal 
interaction, i.e. in the case where the elements of R(O) are large, the present procedure 
must be changed not only in the scheme of the iterative solution of (4) but also in the 
expression of the total HF energy. Calculations along these lines are in progress and will 
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Table 1. Results €or the total Hartree-Fock energy and the 1s electron orbital energy (all in 
au) for a H e  atom embedded into a metallic jellium for r, = 4.0 au and various depths. 

-0.25 (-0.921 79,0.00000) (- 2.864 644 310,O.O) t 
-0.75 (-0.92299,0.00000) (-2.865211 961,O.O)t 

-1.40 (-0.92509, -0.00098) (-2.865685601,1.772 x 10-’)t 

Free He atom -0.9179 -2.861491091 

-1.10 (-0.92494, -0.00060) (-2.865761240,1.081 x lW5)t 

f Expected value of the Hamiltonian given by (6) 

Table2. Results for the total Hartree-Fock energy and the 1s and 2s electron orbital energies 
(all in au) of a Li atom embedded into a metallic jellium for Vbortom = -0.40 au and various 
ranges. 

4.0 (-2.435 12, -0.00069) (-0.20715, -0.07823)t 
7.0 (-2.51583,O.OOOOO) (-0.21156. -0.031 18) (-7.453108229,2.39863 x 
10.0 (-2.48195,O.OOOOO) (-0.19779, -0.00107) (-7.430944491.2.07573 x 
15.0 (-2.47535,O.OOOOO) (-0.19622,0.00000) (-7.422934766,2.56 X 

Free Li atom -2.47533 -0.196 22 - 7.429 346 501 

+ Not converged in EHF; see the text. 
$ Expected value of the Hamiltonian given by (6) 

be reported elsewhere. In the case of strong impurity-metal interaction (i.e. large value 
of Vbottom or/and small values of Y,) within the present method, we usually observe a poor 
convergence towards self-consistency. In particular, we observe an oscillation in the 
eigenvalues which, however, is limited to the fifth or higher significant figure. To such a 
solution the result for a jellium of r, = 4.0 au is referred to in table 2. 

As expected, our results indicate that the eigenstates that have eigen-energies above 
the bottom of the conduction band of the host metal exhibit a broadening that depends 
on the strength of the embedding potential and the distance of the energy level from the 
bottom of the conduction band. This is more pronounced in the embedding of Li, as this 
impurity has an open electron shell. The calculated line-widths for the 2s state of Li 
appear quite large even for moderate impurity-host interactions. 

At this stage it is worth emphasising that the present method allows us to work 
separately on the impurity and the host metal. Thus we can concentrate on the impurity 
(atom or cluster) and apply the various calculational schemes of atomic (or molecular) 
physics to the embedded impurity. The present calculation refers only to the HF level of 
approximation with respect to the impurity. However, as this method is not restricted 
to the study of the ground state of the impurity, one can attempt to generalise it to a 
desirable CI level. The only drawback is that the host metal is bound to the existing 
calculational schemes for the band structure which are limited to the local density 
approximation (LDA). Nevertheless when a realistic Green function for the host is used, 
the present method provides one with the possibility of combining existing highly 
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accurate techniques of atomic physics with those of solid state physics that can account 
for band structure effects. 

At the completion of this work, I became aware of the work of Nordlander and Tully 
[lo] who reported calculations based on the CCM [6] for lifetimes and energy shifts of 
hydrogen-atom excitedstates in the vicinity of a jelliumsurface. Although their approach 
is completely different to ours, the principle of the analytic continuation of the Ham- 
iltonian in the complex plane is common to the two cases. The basic qualitative difference 
between the two methods is that in our case we have anticipated that the complex 
embedded potential, and therefore the Hamiltonian that we have employed, have the 
analytic properties that are required by the CCM method [6]. This assumption is widely 
used in atomic calculations when potentials other than the dilatation analytic ones are 
used [ll]. Within these assumptions, it is worth noticing that the present method can 
equally well be used for accurate calculations of energy shifts and lifetimes of excited 
states of either free or embedded/physisorbed atoms. 

I thank Professor J S Faulkner, Professor J N Silverman and Dr Th Mercouris for 
stimulating discussions, and Dr J E Inglesfield for a useful correspondence. Part of the 
computing work was done while I was at the National Hellenic Research Foundation. 
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